A-LEAF, a full device for artificial photosynthesis

By November 25, 2016November 26th, 2016ICIQ

ICIQ leads the project A-LEAF, one of the biggest artificial photosynthesis research projects funded by the European Commission, with nearly 8 million euros. A-LEAF aims to build a photovoltaic device able to reproduce the complete process of photosynthesis to obtain clean fuels and raw materials using exclusively sunlight, water and CO2. Coordinated by Prof. José Ramón Galán-Mascarós from ICIQ, the project counts with 13 partner institutions from 8 different countries. A-LEAF will start next January 2017 and will last 48 months.

The A-LEAF project seeks to respond to the world’s challenge of finding new sustainable alternatives to fossil fuels. Our society has been using fossil fuels as a primary source of energy and as raw materials for synthesizing complex organic compounds with added value such as drugs, polymers or agrochemicals. The ALEAF project aims to design, build and validate a device able to mimic this photosynthetic process as carried out by green plants. Our objective is to achieve direct transformation of water and CO2, through the action of sunlight, into oxygen and organic matter (e.g. methanol, methane). The organic products will then be used as fuels, extracting their stored energy from their recombination with oxygen back to the original feedstock (water and CO2) in an environmentally neutral
closed-cycle.

Photosynthesis can be divided into several processes, including light absorption by a chromophore, charge separation and two chemical transformations: one where sunlight turns water into oxygen and releases protons and electrons; and another where these protons and electrons convert CO2 into carbohydrates, organic matter. Scientists have created artificial platforms able to reproduce many of these sub-processes, but no integrated platform has been realized up to date.

A-LEAF is a multidisciplinary project that brings together materials chemistry, computational chemistry, surface physics, engineering and state-of-the-art characterization techniques. The final objective of the consortium is the validation of a prototype able to transform CO2 into added-value products in a sustainable and cost-efficient way to be transferred to the European industry.

The A-LEAF project is coordinated by Prof. José Ramón Galán-Mascarós from the Institute of Chemical Research of Catalonia (ICIQ). The project’s consortium also counts with two other groups from the ICIQ and 12 more partner institutions: ETH Zurich, Universiteit Leiden, IMDEA Nanociencia, EPFL, Technische Universität Wien, Universitat Jaume I de Castelló, Imperial College, Technische Universität Darmstadt, Forschungszentrum Jülich, Université de Montpellier, INSTM and COVESTRO.

More information at ICIQ website.